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Stabilizing unstable orbits by slow modulation of a control parameter
in a dissipative dynamic system
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Stabilization of unstable periodic orbits embedded in chaotic or nonchaotic attractors is achieved by slow
nonfeedback periodic modulation of a control parameter, without crossing bifurcation boundaries. Also, it is
shown that a step change in the parameter inside one periodic regime can destabilize the system, bringing it to
an unstable limit cycle dependent on the amplitude and phase of the parameter change. Periodic modulation of
the control parameter with a period smaller than the average time spent on the unstable orbit stabilizes this
orbit. The effect is demonstrated in a loss-driven CO2 laser with periodically modulated cavity detuning. The
results of numerical simulations are in a good agreement with experimental results.@S1063-651X~98!03404-7#

PACS number~s!: 05.45.1b, 42.55.Lt, 42.65.Sf
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I. INTRODUCTION

Unstable orbits are very important characteristics of
namic systems. They provide significant information ab
the basins of attraction of different attractors in phase sp
and help to study their topological invariants@1,2#. Many
methods of controlling chaotic and nonchaotic dynamics
based on stabilization of unstable periodic orbits. Indeed,
original chaos control algorithm developed by Ott, Grebo
and Yorke@1# consists in stabilization of a chosen period
orbit embedded within a chaotic attractor by applying sm
time-dependent perturbations to one of the adjustable sys
parameters. The method is based on the fact that a ch
attractor can be represented as an infinite number of uns
periodic orbits@3#. This method and its variations have be
successfully applied to mechanical@4#, electronic@5#, fluid
@6#, chemical@7#, laser@8#, and biological systems@9#. The
principles of the Otto-Grebogi-Yorke~OGY! method have
been used also to stabilize unstable periodic orbits in n
chaotic systems. Recently, Christini and Collins@10# pro-
posed the employment of external noise for destabiliz
stable periodic motion and in such a way sending the sys
state to a desired unstable orbit where the OGY control te
nique can be applied.

Another approach in controlling nonlinear dynamic
which, as distinct from the OGY control method, does n
require either a permanent analysis of the system behavio
a feedback loop, is the application of a weak periodic per
bation on some system parameter at aresonantfrequency
@11# related to a driving force@12#. However, it has been
shown recently@13# that the subharmonic parametric pertu
bation produces a new dynamical system by splitting
original attractor into two new ones. As a rule, the system
attracted to a new attractor with lower complexity, but not
an unstable orbit in the original attractor.

Although the notion of a chaotic attractor is relative
recent, the settling of transients in dissipative systems
common and familiar behavior. The decaying transients
cur in an approach to a stable fixed point or limit cycle. It h
been shown recently@15# that during transients occurrin
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after a short impulsive perturbation of a system parame
the system can evolve towards an unstable orbit. More
cently, aQ-switching technique has been proposed for t
geting unstable orbits in a class-B laser@14#. Moreover, both
the Q-switching and short impulsive excitation, dependi
on their phase, can bring the system to other stable coe
ing attractors@15,14#. Chaotic transients in a loss-driven CO2

laser after a sudden switch of control parameters betw
values corresponding to two different dynamic regimes w
experimentally studied by Papoffet al. @16#. Later, transient
statistics after switching a small resonant parametric per
bation was investigated by Meucciet al. @17#.

In the present paper we study a method of stabiliz
unstable periodic orbits in a dissipative system by usin
slow periodic modulation of a control parameter witho
crossing bifurcation boundaries~i.e., when the control pa-
rameter is modulated between values corresponding to
dynamic regime, e.g., inside a period-2 orbit or chaos!. The
term ‘‘slow’’ means that the frequency of the control mod
lation is much smaller than the characteristic frequency
the system, e.g., the driving frequency. We study the rela
of this effect with relaxation processes occurring after a s
parameter change. The method is verified in a loss-dri
CO2 laser with the use of cavity detuning as a control p
rameter that is periodically modulated. We investigate h
the stabilizing effect depends on the amplitude and f
quency of the control modulation as well as on the sensitiv
of the system to the parameter change.

The main advantage of our technique over the method
tracking unstable steady states by large-amplitude perio
parametric modulation proposed recently by Vilaseca a
co-workers@18,19# is that in our approach the proper choic
of modulation frequency and amplitude allows the stabiliz
tion of unstable orbits without large shifts of the paramet
In this sense, it is not necessary for the system to pass
ward and backward through various bifurcations, from
gimes where the orbit to be tracked is stable into its unsta
parameter range. This makes our method applicable to
tems that cannot be shifted very far from their natural para
eter range to access a bifurcation point.
4046 © 1998 The American Physical Society
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57 4047STABILIZING UNSTABLE ORBITS BY SLOW . . .
The plan of the paper is as follows. In Sec. II we descr
very briefly a model for the loss-driven CO2 laser and pro-
vide several numerical solutions in order to illustrate the
fectiveness of the method. Some are to demonstrate the
ference in transients occurring when cavity detuning rapi
switches from lower to higher values and back in a perio
regime. Special attention is focused on the influence of
switching phase on the duration of transients. The other
amples show how the sensitivity of the system to the cha
of the control parameter has an effect on the stabilization
unstable orbits. Dynamical hysteresis, which takes pl
when detuning periodically increases and decreases, is s
ied in the laser response. We show how this hysteresis
pends on the modulation frequency of detuning. We a
investigate how the modulation amplitude of the control p
rameter influences the stabilization of unstable orbits. At
end of the section we demonstrate the applicability of
method to the stabilization of periodic orbits embedd
within a chaotic attractor.

In Sec. III we describe our experimental results, wh
confirm the results of the numerical simulations. Finally,
Sec. IV we present the main conclusions.

II. NUMERICAL SIMULATIONS

A. Model

The operation of a loss-driven CO2 laser can be describe
by a system of equations based on the well-known four-le
model @20#. In addition to five differential equations for th
laser intensity, the populations of the upper and lower las
levels, and the global populations of the two manifolds
rotational levels, we introduce three equations that take
account the energy exchange between CO2 and N2 mol-
ecules, and the rates of vibrational-vibrational energy
change within symmetric and asymmetric modes of the C2
molecule.

Let the active medium of the CO2 laser before switching
on the electric discharge to be a mixture of the gases C2,
N2, and He. For the sake of definiteness, we shall consid
single-mode lasing within a vibrational-rotational transiti
of the 0001-1000 channel. The CO2 laser with modulated
losses can be described by the system of equations@21#

dN1

dt
5b1neN02W10N11W21N21B~n!u~n2

j 2n1
j !, ~1!

dN2

dt
5b2neN01WNCNN~N0M12N2M0!2W21N2

2B~n!u~n2
j 2n1

j !, ~2!

dM1

dt
5b3neM01WNCNC~N2M02N0M1!, ~3!

dn1

dt
5B~n!u~n2

j 2n1
j !2V1~n12N1!, ~4!

dn2

dt
5B~n!u~n2

j 2n1
j !2V2~n22N2!, ~5!
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dn1
j

dt
5B~n!u~n2

j 2n1
j !2VR~n1

j 2F1
j n1!2V1~n1

j 2F1
j N1!,

~6!

dn2
j

dt
5B~n!u~n2

j 2n1
j !2VR~n2

j 2F2
j n2!2V2~n2

j 2F2
j N2!,

~7!

du

dt
5cm@k~n!y2k#u. ~8!

Here N0, N1, and N2 are the relative quasiequilibrium
populations of the vibrational 0000, 1000, and 0001 levels of
CO2; M0 and M1 are the relative populations of the fund
mental and first exited vibrational level of N2; n1 andn2 are
the relative quasinonequilibrium populations of the vibr
tional 1000 and 0001 levels of CO2 @22#; n1

j andn2
j are the

relative populations of lower and upper laser rotational s
levels @23#; ne is the free-electron density in the active m
dium; W21 and W10 are the effective rates of collisional re
laxation in 0001-1000 and 100 0-0000 channels;VR is the
rotational relaxation rate;V1 and V2 are the vibrational re-
laxation rates that describe the relaxation of ‘‘instantaneou
populationsn1 and n2 to their quasiequilibrium valuesN1
andN2; WNC is the exchange rate of the vibrational excit
tion from N2 to CO2; b1, b2, andb3 are the pumping rates
of N2 and the lower and upper levels of CO2 in the electric
discharge;NC and NN are the volume density of CO2 and
N 2; F1

j andF2
j are the normalized Boltzmann functions d

termining the part of molecules in the corresponding ro
tional sublevels in thermodynamic equilibrium:n1

j 5F1
j n1 ,

n2
j 5F2

j n2; B(n) and k(n) are the Einstein coefficient an
specific gain coefficient at the lasing frequencyn; l m and l a
are the lengths of the loss modulator and active medium;c is
the speed of light in the active medium;m is the packing
coefficient for the active medium in the cavity;u is the av-
erage radiation density;y5n2

j 2n1
j is the population inver-

sion.
The loss coefficient of the laser cavity is described by

expression

k5k01Dk@12cos~2p f 0t !#, ~9!

wherek0 is the loss coefficient without modulation,Dk and
f 051/T are the~driving! amplitude and frequency of los
modulation, andT is the period of loss modulation. Th
simulations are performed for parameters appropriate for
following experimental situation. The active medium is
mixture of CO2:N2 :He51:1:8 at apressure of 15 torr. The
laser operates on a single mode at the 10P20 line. The cavity
length is 2 m, the length of the active medium is 1.8 m, a
f 05110 kHz. Other parameters are varied in numeri
simulations.

Several previous theoretical and experimental wo
@19,24# have shown very high sensitivity of the dynamics
a class-B laser to changes in cavity detuning that leads to
corresponding changes in the lasing frequencyn. Therefore,
we choose just this parameter as a control parameter in
numerical and experimental research. We define the ca
detuning asd5(n2n0)/g, wheren0 is the central frequency
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and g is the half-width at half maximum of the Lorentzia
gain line shape. The period-2 bubble appears with detun
betweend0150.510 andd0250.542 atk05631023 cm21

andDk5731026 cm21.

B. Transients after step change of the control parameter

Detailed investigations of transients occurring after s
change in detuning inside a period-2 domain betweend01
andd02 show that the duration of transients after forward a
backward switching of detuning~from d150.525 to d2
50.535 and back! are different. The time evolution of th
laser intensityI , which is proportional to the instantaneou
value of the radiation densityu(t), is shown for illustration
in Fig. 1. From these examples of transients after forw
and backward switching of detuning one can see that a
step increasing detuning fromd1 to d2 @Fig. 1~a!#, the lasing
switches off for a short time and then the system evol
towards an unstable period-1 orbit before it reaches ano
stable period-2 orbit. To characterize transients we dis
guish in Fig. 1~a! three time intervals from the moment o
the parameter change: the time of running into the perio
orbit (t1), when the intensity difference between two succ
sive peaks is minimum, i.e., when the system approac
closest the period-1 orbit; the time of leaving the period
orbit (t2) when the peak intensity exceeds by 10% that at
previous peak; and the time of reaching a new period-2
gime (t3) when the maximal intensity reaches 0.9 of that
the new stable period-2 regime. When detuning decrea
i.e., switches fromd2 to d1 @Fig. 1~b!#, the lasing never
switches off immediately and the period-1 regime appear
the laser response only within a very narrow phase range
this case, the system relaxes with timet4 when the maxi-
mum intensity reaches 1.1 of that at the new stable perio
regime. Thust3 and t4 characterize the total durations o
transients after forward and backward switching.

Comparing Figs. 1~a! and 1~b!, one can see that the dura
tion of transients is shorter when detuning decreases,

FIG. 1. Numerical transients at the~a! forward and~b! backward
step switching of the cavity detuning betweend150.525 andd2

50.535.k05631023 cm21 andDk5731026 cm21. The arrows
indicate the moments of the detuning switch. Note the expan
horizontal scale on the figures of the left-hand column. Trans
timest1, t2, t3, andt4 are defined in the text.
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when the parameter changes so that the maximum inten
at the new stable state is greater. As distinct from
Q-switched laser@14#, where the laser is switched off, so th
it ‘‘forgets’’ its previous history, and is switched on agai
the step change of the parameter leads to the interruptio
lasing for a relatively short time~2–3 T! @see the left-hand
side of Fig. 1~a!# and the laser still ‘‘remembers’’ the phas
of the parameter switch. Physically, when the lasing is
sent, the inversion is progressively increasing and finall
giant pulse is lased and damped oscillations destabilize
system. This destabilization brings the system state close
a desired unstable orbit. The maximal intensity in the fi
giant pulse depends on the duration of the no-lasing st
which is determined by the switching phase and the am
tude of the parameter change. The step change in the pa
eter can be considered as a sudden kick of the system th
similar to the influence of an externald-function impact. As
was shown in@15#, the kick moves the system state to a
other point of its phase space. In addition to the sim
movement of the current system state, the step change o
parameter results in a slight change of the structure of
phase space itself.

Figure 2 shows the phase dependence of the duratio
transients after the switch of detuning fromd1 to d2 within
the period-2 domain situated betweend01 andd02. As can be
seen from the figure, all times correlate with each other. T
period-1 orbit is targeted at any phase of switching, but
duration of transients displays a strong dependence on
switching phasew. One can see from Fig. 2 that there a
five maxima at which targeting of the unstable period-1 or
is optimal. The first maximum~at w50.27 T! corresponds to
the case when the detuning switches in the range of mini
laser intensity, i.e., between lasing spikes. At this mome
the gain coefficient is close to the loss coefficient and
laser is very sensitive to the parameter change. The switc
d at the moments corresponding to the beginning of the n
linear stage in lasing pulse leads to the appearance of t
close situated maxima in Fig. 2~at w51.26, 1.35, and 1.41
T!. Finally, the last maximum~at w51.7 T! corresponds to
switchingd at the moment when the laser intensity is ma
mal. Additional calculations show that the number of targ
ing maxima and their positions depend on the shape of la
pulses. Absolute maximal transient timest3

max'3.0 ms,

d
nt

FIG. 2. Phase dependence of transient times after the step sw
of the cavity detuning fromd150.525 tod250.535.
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57 4049STABILIZING UNSTABLE ORBITS BY SLOW . . .
t2
max'2.6 ms, andt1

max'1.6 ms are achieved at the switchin
phasew51.7 T for the conditions of Fig. 2.

Additional investigations show that after parame
switch, during transients, the system can also evolve tow
another stable coexisting attractor at certain switch
phases. Similar behavior has been observed under the i
ence of targetingd pulses@15# and Q switching @14#. The
targeting of coexisting attractors depends also on the am
tude of the detuning change, i.e., ond215d22d1.

C. Stabilizing an unstable period-1 orbit within
a period-2 domain

In this subsection we shall show how periodic modulat
of the system parameter with a period smaller than the a
age ~over all switching phases! duration of the unstable
period-1 orbit in transients after step changing the con
parameter (t2 in Fig. 2! leads to stabilization of the period-
orbit. The cavity detuning can be expressed as

d5d01Dd@12cos~2p f 1t !#, ~10!

whered0 is the initial detuning from the center of the ga
contour without the control modulation andDd and f 1 are
the amplitude and frequency of the control modulation. W
consider a slow modulation of the control parameter~i.e.,
f 1! f 0) and therefore we neglect a phase difference betw
the control and driving signals.

Figure 3 demonstrates the stabilizing effect of perio
modulation of detuning on the laser initially operating in
period-2 regime. One can see in Figs. 3~a! and 3~b! two
hysteresis loops corresponding to stroboscopic measu
maxima of the laser intensityI at time intervalsT, with
increasing~forward! and decreasing~backward! detuning.
From these figures it is seen that with increasing con
frequency, these loops diverge~converge! in the range of
small ~large! detuning. With a further increasef 1, they over-
lap @Fig. 3~c!# and finally merge into a single loop@Fig.
3~d!#. This single loop corresponds to the period-1 regim
Thus there is a minimal control frequencyf st at which the
unstable orbit is completely stabilized. This frequency d
pends, of course, on the parameters of the control mod
tion, which will be discussed in detail in Sec. II D.

The stabilizing effect can be quantitatively estimated
terms of the difference between the intensities for the up
and lower loops at the forward (DI 1) and backward (DI 2)
sweep of detuning at fixedd. The behavior of these differ
ences versus the control frequency atd50.53, shown in Fig.
4~a!, is complex. One can see thatDI 1 has a maximum a
f 1'400 Hz, where the difference betweenDI 1 andDI 2 is
maximal; at f 1'500 Hz they intersect; with a further in
crease off 1 they diverge; then atf 1*800 Hz they converge
finally, at f 1*1.1 kHz the curves merge, i.e., this means t
the period-1 orbit is stabilized. Similar behavior is observ
at other fixedd.

For a quantitative characterization of the dynamical h
teresis, we introduce the value ofH5DI 12DI 2 , which
yields the difference between the maximal intensities at fi
d at forward and backward sweeping. The value ofH versus
the control frequency atd50.53 is shown in Fig. 4~b!. This
dependence has two extrema. The maximum correspond
r
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the maximal divergences of the hysteresis loops shown
Fig. 3, the loops begin to merge at the range of negativeH
( f 1*500 Hz!, and the period-1 orbit is stabilized atH50
( f 1*1.1 kHz!, when only a single loop remains.

Additional calculations show that comparing the durati
of transients after a step change in detuning with the pe
of the control modulation, we can make the following co
clusions.~i! Increasing the control frequency until the perio
of the modulation becomes equal to the maximal duration
transients, i.e., until 1/f 15T15t3

max, the maximal intensity
increases and hysteresis loops diverge.~ii ! Suppression of
the period-2 regime is realized whenT1&t3

max. ~iii ! The
period-1 regime appears whenT1&t2

max, i.e., when the pe-
riod of the control modulation is smaller than the maxim
time of the system’s stay on the period-1 orbit.~iv! Stabili-
zation of the period-1 orbit takes place whenT1 is shorter
than the average time of the system’s stay on the perio
orbit over all phase range, i.e., averaget2.

FIG. 3. Numerical stroboscopic diagrams showing dynami
hysteresis loops at different control frequencies~a! f 15200 Hz,~b!
f 15500 Hz, ~c! f 151 kHz, and ~d! f 152 kHz. d050.525 and
Dd50.005. The arrows indicate the direction in the change of
tuning. ~b! The definitions ofDI 1 andDI 2 are shown.
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D. Sensitivity to the change of control parameter

The stabilization effect depends on the amplitudeDd and
frequencyf 1 of control modulation as well as on the initia
detuningd0 @see Eq.~10!#. Generally, the efficiency of sta
bilization is determined by the sensitivity of the system
the parameter change. In the absence of detuning mod
tion, the laser with cavity loss modulation displays t
period-2 cycles both ford15d0 and ford25d012Dd, with
maximal peak intensitiesI 1 and I 2, respectively. The sensi
tivity can be quantitatively characterized by the depende
of f st on Dd or on DI 5I 12I 2. However,DI is not a linear
function ofDd and for generalization of the results we stu
the dependence onDI because this value characterizes t
difference in the system state either at two fixed values of
control parameter or when the parameter changes adia
cally between these two boundary values. Moreover, the
bilization can be achieved by modulating a control parame
other thand in a different nonlinear system.

The minimal stabilization frequency as a function ofDI is
shown in Fig. 5~a!. The detuning is modulated inside th
period-2 domain situated betweend01 andd02. The values of
DI are determined by using differentDd. The data in Fig.
5~a! are well fitted by the double exponential curve

f st5a1exp@~DI 02DI !/b1#1a2exp@~DI 02DI !/b2#,
~11!

where the constantsDI 050.196,a156, a252, b150.065,
andb250.676. Thus the stabilizing frequency decays ex
nentially with DI . Extrapolation of this dependence toDI
→` leads tof st→0. This means that at very high changes

FIG. 4. ~a! Difference between hysteresis loops and~b! hyster-
esis parameterH versus modulation frequency at fixed detuningd
50.53 ~for definition see the text!. The conditions correspond t
that of Fig. 3. Two extrema in~b! display convergence and dive
gence of hysteresis loops with the control frequency.
la-

e

e
ti-

a-
r

-

the laser response, the stabilization is possible at very s
modulation of the parameter, while at very smallDI , the
stabilizing frequency should be very high. The upper ran
in f st is bounded by the commensurability of the contr
frequency with the driving one. An interaction between the
two frequencies can result in phase locking that leads to
ditional hysteresis effects.

The sensitivity of the system to the parameter change
pends on the distance from the bifurcation point or, in oth
words, on the vicinity of the system to the desired unsta
orbit. Figure 5~b! displays the evolution of the stabilizin
frequency versus the distance from period-doubling bifur
tion points~remember that the period-doubling bifurcatio
are observed atd0150.510 andd0250.542). One can see
that closer to the bifurcation point, the laser is more sensi
to the change in the control parameter, i.e., the period-1 o
is stabilized at a lower control frequency.

Additional simulations show that the sensitivity is diffe
ent when detuning is varied within a period-2 domain si
ated at the center of the gain contour. Obviously, close
the maximum gain, the laser is less sensitive to detuning
the control frequency needed to stabilize an unstable orb
higher, i.e., for targeting an unstable orbit the detun
should change faster.

E. Stabilizing periodic orbits embedded within
a chaotic attractor

Stabilization of periodic orbits can be achieved also wh
detuning is modulated within a chaotic domain that appe
at certain detuning when the driving amplitude increases

FIG. 5. Minimal stabilizing frequency versus~a! the asymptotic
change in laser intensity and~b! the initial value of detuning. De-
tuning is modulated inside the period-2 domain. In~b! Dd50.005.
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57 4051STABILIZING UNSTABLE ORBITS BY SLOW . . .
to Dk52.431025 cm21. Figure 6 demonstrates inhibition o
chaos when the control modulation is applied. One can
tinguish in Fig. 6~b! periodic regimes that appear with in
creasingf 1. At f 151 kHz, a period-2 regime is reached
low detuning @left-hand side of Fig. 6~b!#, while at f 156
kHz only a single period-1 orbit remains over the who
range of detuning@Fig. 6~c!#. Dynamical hysteresis is clearl
seen in Figs. 6~b! and 6~c!.

III. EXPERIMENT

The experiments were carried out with a single-mode C2
laser with modulated losses via an acousto-optic modula
The experimental setup is similar to that described in pre
ous work@19#. Thedriving electric signalVd5Adsin(2pfdt)
at frequencyf d5105 kHz and amplitudeA0 is applied to the
modulator providing the time-dependent cavity losses in
cordance with Eq.~9!. The control electric signalVc5Ac

0

1Ac(t)[Ac
01DAc@12cos(2pfct)#, with a constant bias

voltage Ac
0 and modulation amplitudeDAc and frequency

f c , is used to tune the output mirror with a piezotranslat
This signal produces appropriate changes in cavity detun
in accordance with Eq.~10!. The frequency of relaxation
oscillations at the center of the gain line is about 108 kH
This value is estimated from averaged power spectra w
noise is applied to the modulator. Other parameters are
same as those used in simulations.

Figure 7 shows an experimental bifurcation diagram w
cavity detuning as a control parameter. This diagram is
tained by applying a ramp signal to the piezotranslator wit

FIG. 6. Numerical bifurcation diagrams showing stabilization
periodic orbits within a chaotic attractor with increasing cont
frequency~a! f 15200 Hz, ~b! f 151 kHz, and~c! f 156 kHz. k0

5631023 cm21, Dk52.431025 cm21, d050.49, and Dd
50.02. The arrows indicate the direction in the change of detun
s-

r.
i-

-

.
g

.
n

he

-
a

duration of 40 ms. One can see that within certain range
detuning the laser operates in a period-2 regime.

Examples of experimental transients after a step chang
detuning are shown for illustration in Fig. 8. A small chan
of detuning inside the period-2 domain~right-hand side of
Fig. 7! does not lead to destabilization of the system an
period-1 orbit is not targeted@Fig. 8~a!#, while the enhance-
ment of the detuning range allows one to target a perio
orbit in transients, as can be seen in Fig. 8~b!. In this case,
the transients are larger (5.6 ms! than in the previous case
One can compare in Fig. 8~a! the duration of transients a
forward and backward switching of detuning, which a
equal to 3.8 and 2 ms, respectively. Thus the transient tim
larger when detuning changes from a lower to a higher va
that agrees with simulations.

Following Eq.~10!, we apply a sinusoidal modulation t
cavity detuning so that the system remains inside
period-2 domain. Experimental bifurcation diagrams sho
in Fig. 9 demonstrate the effect of the control modulation
different frequencies. One can see that with increasingf c ,
the period-2 regime is progressively suppressed@Figs. 9~b!
and 9~c!#, the period-1 orbit appears in the laser respon
@Fig. 9~c!#, and complete stabilization is achieved atf c52
kHz @Fig. 9~d!#. Comparing these diagrams with numeric
ones shown in Fig. 4, one can see a good qualitative ag
ment.

Periodic modulation of detuning inside a chaotic doma

f
l

g.

FIG. 7. Experimental birfurcation diagram with detuningAc
0 as a

control parameter.Ad57 V and Ac(t)50. Here the detuning is
ramped at a constant rate for 40 ms.

FIG. 8. Experimental stroboscopic transients after different s
changes in cavity detuning. The voltageAc applied to the pie-
zotranslator that tunes the cavity mirror is shown in the lower p
of the figures.~a! Difference in transients when detuning switch
on and off. ~b! Transients led to an unstable period-1 regime
higherAc . Ad57 V and f c50.
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which appears at a higher driving amplitude (Ad510 V!,
results in an alternation of chaotic and periodic regimes~Fig.
10!. With increasingf c , the range of the existence of th
periodic regimes increases@compare Figs. 10~a! and 10~b!#
and finally, the period-1 orbit is stabilized at a certain ran
of detuning @Fig. 10~c!#. Although we did not manage to
stabilize the period-1 orbit over the whole detuning ran
because of the laser instabilities, these results confirm
numerical simulations and demonstrate the validity of
present approach for stabilizing periodic orbits embed
within a chaotic attractor.

IV. CONCLUSIONS

In this work we have numerically shown that a slow p
riodic modulation of a control parameter can stabilize u
stable periodic orbits embedded within chaotic or noncha
attractors. We have studied how the duration of transie
after a step change of the control parameter depends on
phase of the parameter switch. We have demonstrated
the change of the parameter can direct the system’s trajec
towards the attracting stable manifold of the desired unsta

FIG. 9. Experimental stroboscopic diagrams showing stabil
tion of the period-1 orbit within the period-2 attractor at differe
control frequencies~a! f c5200 Hz,~b! f c5500 Hz,~c! f c51 kHz,
and ~d! f c52 kHz. Ad57 V.
e

e
ur
e
d

-
-
ic
ts
the
at
ry
le

periodic orbit. The best conditions for targeting unstable
bits have been investigated in detail. The introduction of
riodic modulation of the control parameter with a perio
shorter than the time of the existence of the unstable o
during transients does not allow the system to leave the
stable orbit and hence this leads to its stabilization. Once
orbit is targeted, the system remains on it until the contro
switched off.

We have applied this method to a loss-driven CO2 laser
with periodically modulated cavity detuning. We have stu
ied the dynamical hysteresis appearing in the laser resp
when detuning is periodically modulated. The hystere
loops display divergent or convergent behavior depending
the control frequency. We have investigated how the e
ciency of stabilization depends on the system’s sensitivity
the parameter change. Minimal stabilization frequency
cays exponentially with the increasing difference betwe
adiabatic laser intensities at the boundary values of detun
The technique described in this work requires no knowled
of the underlying system behavior. The results of numeri
simulations are in good agreement with experiments.

Although the method proposed was applied to a laser,
think that a similar approach can be implemented to differ
dissipative dynamic systems whose behavior depe
strongly on parameters. For instance, some biological
medical experiments can be considered from this point
view; in particular, dynamical diseases tend to exhibit tra
sient behaviors and the severity of their symptoms va
over time@25#. As an example, medical experiments on flu

-

FIG. 10. Experimental stroboscopic diagrams showing the
pearance of a periodic structure in the chaotic attractor at diffe
control frequencies~a! f c5200 Hz,~b! f c5500 Hz, and~c! f c53
kHz. Ad510 V.
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tuations in tremor and respiration in patients with Park
son’s disease@26# may be explained in the frame of prese
work. Parkinson’s disease is a chronic neurodegenera
disorder characterized by an involuntary~chaotic! movement
of a part of the body. The correlation between tremor am
tude and respiration rate has been observed: the tremor
plitude decreases with respiration rate after transients of
eral seconds. These changes may be a consequenc
stabilizing periodic orbits due to the alternation in one~or
more! significant physiological variable~s!.
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