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Stabilizing unstable orbits by slow modulation of a control parameter
in a dissipative dynamic system
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Stabilization of unstable periodic orbits embedded in chaotic or nonchaotic attractors is achieved by slow
nonfeedback periodic modulation of a control parameter, without crossing bifurcation boundaries. Also, it is
shown that a step change in the parameter inside one periodic regime can destabilize the system, bringing it to
an unstable limit cycle dependent on the amplitude and phase of the parameter change. Periodic modulation of
the control parameter with a period smaller than the average time spent on the unstable orbit stabilizes this
orbit. The effect is demonstrated in a loss-driven,G&ser with periodically modulated cavity detuning. The
results of numerical simulations are in a good agreement with experimental reSt§3-651X98)03404-7

PACS numbe(s): 05.45:+b, 42.55.Lt, 42.65.5f

I. INTRODUCTION after a short impulsive perturbation of a system parameter,
the system can evolve towards an unstable orbit. More re-
Unstable orbits are very important characteristics of dy-cently, aQ-switching technique has been proposed for tar-
namic systems. They provide significant information aboufgeting unstable orbits in a clagstaser[14]. Moreover, both
the basins of attraction of different attractors in phase spacthe Q-switching and short impulsive excitation, depending
and help to study their topological invariarts,2]. Many  on their phase, can bring the system to other stable coexist-
methods of controlling chaotic and nonchaotic dynamics aréng attractor§15,14). Chaotic transients in a loss-driven €O
based on stabilization of unstable periodic orbits. Indeed, théaser after a sudden switch of control parameters between
original chaos control algorithm developed by Ott, Grebogi,values corresponding to two different dynamic regimes were
and Yorke[1] consists in stabilization of a chosen periodic experimentally studied by Papadt al. [16]. Later, transient
orbit embedded within a chaotic attractor by applying smallstatistics after switching a small resonant parametric pertur-
time-dependent perturbations to one of the adjustable systebation was investigated by Meucet al.[17].
parameters. The method is based on the fact that a chaotic In the present paper we study a method of stabilizing
attractor can be represented as an infinite number of unstabitstable periodic orbits in a dissipative system by using a
periodic orbits[3]. This method and its variations have beenslow periodic modulation of a control parameter without
successfully applied to mechaniddl], electronic[5], fluid  crossing bifurcation boundarigge., when the control pa-
[6], chemical[7], laser[8], and biological systemi®9]. The rameter is modulated between values corresponding to one
principles of the Otto-Grebogi-YorkéOGY) method have dynamic regime, e.g., inside a period-2 orbit or chad$e
been used also to stabilize unstable periodic orbits in nonterm “slow” means that the frequency of the control modu-
chaotic systems. Recently, Christini and Collii®] pro- lation is much smaller than the characteristic frequency of
posed the employment of external noise for destabilizinghe system, e.g., the driving frequency. We study the relation
stable periodic motion and in such a way sending the systerof this effect with relaxation processes occurring after a step
state to a desired unstable orbit where the OGY control techparameter change. The method is verified in a loss-driven
nigue can be applied. CO, laser with the use of cavity detuning as a control pa-
Another approach in controlling nonlinear dynamics,rameter that is periodically modulated. We investigate how
which, as distinct from the OGY control method, does notthe stabilizing effect depends on the amplitude and fre-
require either a permanent analysis of the system behavior guency of the control modulation as well as on the sensitivity
a feedback loop, is the application of a weak periodic perturof the system to the parameter change.
bation on some system parameter ateaonantfrequency The main advantage of our technique over the method of
[11] related to a driving forcg12]. However, it has been tracking unstable steady states by large-amplitude periodic
shown recently 13] that the subharmonic parametric pertur- parametric modulation proposed recently by Vilaseca and
bation produces a new dynamical system by splitting theco-workers[18,19 is that in our approach the proper choice
original attractor into two new ones. As a rule, the system i©of modulation frequency and amplitude allows the stabiliza-
attracted to a new attractor with lower complexity, but not totion of unstable orbits without large shifts of the parameter.
an unstable orbit in the original attractor. In this sense, it is not necessary for the system to pass for-
Although the notion of a chaotic attractor is relatively ward and backward through various bifurcations, from re-
recent, the settling of transients in dissipative systems is gimes where the orbit to be tracked is stable into its unstable
common and familiar behavior. The decaying transients ocparameter range. This makes our method applicable to sys-
cur in an approach to a stable fixed point or limit cycle. It hastems that cannot be shifted very far from their natural param-
been shown recently15] that during transients occurring eter range to access a bifurcation point.
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The plan of the paper is as follows. In Sec. Il we describe dnjl o . _ _ .
very briefly a model for the loss-driven GQaser and pro- -~ == B(»)u(nb—n))—Vg(n,—Fin))—Vi(n)—F)N,),
vide several numerical solutions in order to illustrate the ef- 6)
fectiveness of the method. Some are to demonstrate the dif-
ference in transients occurring when cavity detuning rapidly dni
switches from lower to higher values and back in a period-2 —2 — B(V)U(njz—njl)—VR(njz— sznz)—Vz(njz— |:J'2N2),
regime. Special attention is focused on the influence of the t

switching phase on the duration of transients. The other ex- @)

amples show how the sensitivity of the system to the change d

of the control parameter has an effect on the stabilization of au_ —k 8
: . ; . culx(v)y—k]u. ®

unstable orbits. Dynamical hysteresis, which takes place dt

when detuning periodically increases and decreases, is stud- ) o
ied in the laser response. We show how this hysteresis de- Hereé No, N3, and N are the relative quasiequilibrium
pends on the modulation frequency of detuning. We als@®opulations of the vibrational 80, 10, and 001 levels of
investigate how the modulation amplitude of the control pa-CO2; Mo andM; are the relative populations of the funda-
rameter influences the stabilization of unstable orbits. At thénental and first exited vibrational level of,Nn; andn, are
end of the section we demonstrate the applicability of the¢he relative quasinonequilibrium populations of the vibra-
method to the stabilization of periodic orbits embeddedtional 180 and 081 levels of CQ [22]; n} andn) are the
within a chaotic attractor. relative populations of lower and upper laser rotational sub-
In Sec. lll we describe our experimental results, whichlevels[23]; n. is the free-electron density in the active me-
confirm the results of the numerical simulations. Finally, indium; W,; and W, are the effective rates of collisional re-
Sec. IV we present the main conclusions. laxation in 001-1°0 and 18 0-00°0 channelsVy is the
rotational relaxation ratey; andV, are the vibrational re-
laxation rates that describe the relaxation of “instantaneous”
populationsn; and n, to their quasiequilibrium valuehl;
A. Model andN,; Wy is the exchange rate of the vibrational excita-
The operation of a loss-driven G@aser can be described 1O from N 10 CO,; B3, B2, and B3 are the pumping rates
by a system of equations based on the well-known four-leveP’ N2 and the lower and upper levels of ¢@ the electric
model[20]. In addition to five differential equations for the dischargeNc andNy are the volume density of GOand
laser intensity, the populations of the upper and lower Iasin(_%\‘z; F1 andF} are the normalized Boltzmann functions de-
levels, and the global populations of the two manifolds oftérmining the part of molecules in the corresponding rota-
rotational levels, we introduce three equations that take intéonal sublevels in thermodynamic equilibriumy=Fin,,
account the energy exchange between,G@d N, mol-  nb=Fin,; B(») and «(v) are the Einstein coefficient and
ecules, and the rates of vibrational-vibrational energy exspecific gain coefficient at the lasing frequengyl ,, andl ,
change within symmetric and asymmetric modes of the COare the lengths of the loss modulator and active meduis,
molecule. the speed of light in the active mediurg; is the packing
Let the active medium of the GQaser before switching coefficient for the active medium in the cavity;is the av-
on the electric discharge to be a mixture of the gases, CO erage radiation density;=n)—n) is the population inver-
N,, and He. For the sake of definiteness, we shall consider sion.
single-mode lasing within a vibrational-rotational transition = The loss coefficient of the laser cavity is described by the
of the 001-1°0 channel. The CQlaser with modulated expression
losses can be described by the system of equafi@ts

1. NUMERICAL SIMULATIONS

g k=Kko+AKk[1-coq27xfyt)], 9)
N, o
gt = BineNo=WiNy +WaNo+B(r)u(ny—ni), (1) wherek, is the loss coefficient without modulationk and
fo=21/T are the(driving) amplitude and frequency of loss
dN, modula_tion, andT is the period of loss modulati_on. The
T BoNeNo+WycNy(NoM 1 — N,Mg) — Wy N, ]:c,lmulz_atlons are _performe(_j for_ parameters appropriate fgr the
ollowing experimental situation. The active medium is a
_ B(v)u(njz— njl) ?) mixture of CQ:NZ:H§= 1:1:8 at apressure of 15 torr. The
' laser operates on a single mode at thB20 line. The cavity
dM length is 2 m, the length of the active medium is 1.8 m, and
d_tl = BanoM o+ Wiy cNe(N,Mg— NoM ), &) ;?mulli\gorlfgl Other parameters are varied in numerical
Several previous theoretical and experimental works
dn, o [19,24] have shown very high sensitivity of the dynamics of
T B(»)u(nt—n})—Vi(n;—Ny), 4 a classB laser to changes in cavity detuning that leads to the
corresponding changes in the lasing frequenciherefore,
we choose just this parameter as a control parameter in our
numerical and experimental research. We define the cavity
detuning asd=(v— vg)/y, whereyy is the central frequency

an,

<t =B()U(nb=nh) =V,(n,—Ny), 5
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FIG. 1. Numerical transients at ti@ forward and(b) backward of the cavity detuning fromd, =0.525 t09,=0.535.

step switching of the cavity detuning betweép=0.525 andé,
=0.535.kg=6x10"% cm ' andAk=7x10"° cm™’. The arrows  when the parameter changes so that the maximum intensity
indicate the moments of the detuning switch. Note the expandedt the new stable state is greater. As distinct from a
horizontal scale on the figures of the left-hand column. TransienQ_SWitChed lasef14], where the laser is switched off, so that
timesy, 75, 73, and 7, are defined in the text. it “forgets” its previous history, and is switched on again,
the step change of the parameter leads to the interruption of
and y is the half-width at half maximum of the Lorentzian lasing for a relatively short timé2-3 T) [see the left-hand
gain line shape. The period-2 bubble appears with detuningide of Fig. 1a)] and the laser still “remembers” the phase
betweendsy;=0.510 anddy,=0.542 atko=6Xx10 2 cm !  of the parameter switch. Physically, when the lasing is ab-
andAk=7x10"%cm L. sent, the inversion is progressively increasing and finally a
giant pulse is lased and damped oscillations destabilize the
system. This destabilization brings the system state closer to
a desired unstable orbit. The maximal intensity in the first
Detailed investigations of transients occurring after stepgiant pulse depends on the duration of the no-lasing state,
change in detuning inside a period-2 domain betwégn which is determined by the switching phase and the ampli-
and 5y, show that the duration of transients after forward andtude of the parameter change. The step change in the param-
backward switching of detuningfrom §,=0.525 to §,  eter can be considered as a sudden kick of the system that is
=0.535 and backare different. The time evolution of the similar to the influence of an extern&tfunction impact. As
laser intensityl, which is proportional to the instantaneous was shown in15], the kick moves the system state to an-
value of the radiation density(t), is shown for illustration  other point of its phase space. In addition to the simple
in Fig. 1. From these examples of transients after forwardnovement of the current system state, the step change of the
and backward switching of detuning one can see that aftgparameter results in a slight change of the structure of the
step increasing detuning frof to &, [Fig. 1(a@)], the lasing  phase space itself.
switches off for a short time and then the system evolves Figure 2 shows the phase dependence of the duration of
towards an unstable period-1 orbit before it reaches anothdfansients after the switch of detuning frafp to &, within
stable period-2 orbit. To characterize transients we distinthe period-2 domain situated betwe&y) anddy,. As can be
guish in Fig. 1a) three time intervals from the moment of seen from the figure, all times correlate with each other. The
the parameter change: the time of running into the period-period-1 orbit is targeted at any phase of switching, but the
orbit (7,), when the intensity difference between two succesduration of transients displays a strong dependence on the
sive peaks is minimum, i.e., when the system approachedwitching phasep. One can see from Fig. 2 that there are
closest the period-1 orbit; the time of leaving the period-1five maxima at which targeting of the unstable period-1 orbit
orbit (7,) when the peak intensity exceeds by 10% that at thés optimal. The first maximuntat ¢ =0.27 T) corresponds to
previous peak; and the time of reaching a new period-2 rethe case when the detuning switches in the range of minimal
gime (3) when the maximal intensity reaches 0.9 of that atlaser intensity, i.e., between lasing spikes. At this moment,
the new stable period-2 regime. When detuning decreasef)e gain coefficient is close to the loss coefficient and the
i.e., switches froms, to 8, [Fig. 1(b)], the lasing never laser is very sensitive to the parameter change. The switch of
switches off immediately and the period-1 regime appears i at the moments corresponding to the beginning of the non-
the laser response only within a very narrow phase range. Ilinear stage in lasing pulse leads to the appearance of three
this case, the system relaxes with timgwhen the maxi- close situated maxima in Fig. @&t ¢=1.26, 1.35, and 1.41
mum intensity reaches 1.1 of that at the new stable period-2). Finally, the last maximuntat ¢=1.7 T) corresponds to
regime. Thusr; and 7, characterize the total durations of switching § at the moment when the laser intensity is maxi-
transients after forward and backward switching. mal. Additional calculations show that the number of target-
Comparing Figs. (B) and 1b), one can see that the dura- ing maxima and their positions depend on the shape of lasing
tion of transients is shorter when detuning decreases, i.epulses. Absolute maximal transient timeg'®~3.0 ms,

B. Transients after step change of the control parameter
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75 %~2.6 ms, andr]'®~1.6 ms are achieved at the switching
phasep=1.7 T for the conditions of Fig. 2.
Additional investigations show that after parameter
switch, during transients, the system can also evolve towards
another stable coexisting attractor at certain switching
phases. Similar behavior has been observed under the influ-

i (
%q
ence of targeting pulses[15] and Q switching[14]. The

targeting of coexisting attractors depends also on the ampli- 0,525 0,530 0,535

n

I(arb. units)

tude of the detuning change, i.e., épy= 5,— 8.

= (b)

e . . o 2r Q .
C. Stabilizing an unstable period-1 orbit within 0 . ",
a period-2 domain = pT, -:_.__.
In this subsection we shall show how periodic modulation g 1AL '--'.:===-. Al
of the system parameter with a period smaller than the aver- = M| o wamrn *
age (over all switching phasesduration of the unstable A .
period-1 orbit in transients after step changing the control 0,525 0,530 0,535
parameter £, in Fig. 2) leads to stabilization of the period-1
orbit. The cavity detuning can be expressed as ol (c)
5= 8o+ Ad[1—cog2mf )], (10) 2
=2 —
e 1F P et nan gy,
where &, is the initial detuning from the center of the gain < .m:'-""""""-'-'-'-"F-"m'
contour without the control modulation adé and f, are , - ,
the amplitude and frequency of the control modulation. We 0,525 0,530 0,535
consider a slow modulation of the control parameies.,
f1<fy) and therefore we neglect a phase difference between (d)
the control and driving signals. @‘2 I
Figure 3 demonstrates the stabilizing effect of periodic E

modulation of detuning on the laser initially operating in a g e
period-2 regime. One can see in Figga)3and 3b) two S I -,

hysteresis loops corresponding to stroboscopic measuring —_
maxima of the laser intensity at time intervalsT, with
increasing(forward and decreasingbackward detuning.
From these figures it is seen that with increasing control Detuning, &

frequency, these loops diverdgeonvergg in the range of , . : ,
small (large detuning. With a further increads, they over- FIG. 3. Numerical stroboscopic diagrams showing dynamical
lap [Fig. 3(c)] and finally merge into a single loofFig. hysteresis loops at different control frequendiasf ; =200 Hz,(b)
L . . ;=500 Hz, (c) f;=1 kHz, and(d) f;=2 kHz. §,=0.525 and
3(d)]. This single loop corresponds to the period-1 reglme'A(S:O 005. The arrows indicate the direction in the chan f de-
. o . .005. ge of de
Thus there IS a minimal control f_r(_aquenctyt_ at which the tuning. (b) The definitions ofAl . andAl_ are shown.
unstable orbit is completely stabilized. This frequency de-
pends, of course, on the parameters of the control modula-
tion, which will be discussed in detail in Sec. Il D. . . ) .
The stabilizing effect can be quantitatively estimated inthe maximal divergences of the hysteresis loops shown in
terms of the difference between the intensities for the uppefrig. 3, the loops begin to merge at the range of negdtive
and lower loops at the forward\( ) and backward41_)  (f1=500 H2, and the period-1 orbit is stabilized &t=0
sweep of detuning at fixed. The behavior of these differ- (f1=1.1 kH2), when only a single loop remains.
ences versus the control frequencyat0.53, shown in Fig. Additional calculations show that comparing the duration
4(a), is complex. One can see thAt . has a maximum at Of transients after a step change in detuning with the period
f,~400 Hz, where the difference betwedn, andAl_ is  ©f the control modulation, we can make the following con-
maximal; atf;~500 Hz they intersect; with a further in- clusions.(i) Increasing the control frequency until the period
crease of; they diverge; then aft, =800 Hz they converge; ©f the modulation becomes equal to the maximal duration of
finally, atf,=1.1 kHz the curves merge, i.e., this means thafransients, i.e., until 1{=T, =75, the maximal intensity
the period-1 orbit is stabilized. Similar behavior is observedncreases and hysteresis loops diver@®. Suppression of
at other fixeds. the period-2 regime is realized whéhy <732, (iii) The
For a quantitative characterization of the dynamical hysperiod-1 regime appears whain< 5%, i.e., when the pe-
teresis, we introduce the value ¢f=Al,—Al_, which  riod of the control modulation is smaller than the maximal
yields the difference between the maximal intensities at fixedime of the system’s stay on the period-1 orlfiv,) Stabili-
S at forward and backward sweeping. The valuddofersus  zation of the period-1 orbit takes place whe&np is shorter
the control frequency af=0.53 is shown in Fig. é). This  than the average time of the system’s stay on the period-1

dependence has two extrema. The maximum corresponds twbit over all phase range, i.e., average

0,625 0,530 0,535



4050 A. N. PISARCHIK, B. F. KUNTSEVICH, AND R. CORBALAN 57
g 1S AL @ s | @
= J 2 .

s MO oAL =
5 A AL el o
= 05} \‘/ g ;
< \ e
= 0.0} \.‘\,&40_‘—-—“‘. 2 '
: s s . : = fan
00 05 10 15 20 - g
@ 0,2 0,4 0,6 0,8 1,0
1.0 (b) Intensity, A/ (arb. units)
0,5} /' \
T 0,0} \ Sey ——0eae - (b)
0,5} N /
s 5k
-1,0t

00 05 10 15 20
Frequency, f, (kHz)

Stabilizing frequency, £, (kHz)
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esis parameted versus modulation frequency at fixed detunifig
=0.53 (for definition see the text The conditions correspond to
that of Fig. 3. Two extrema iifb) display convergence and diver-
gence of hysteresis loops with the control frequency.
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FIG. 5. Minimal stabilizing frequency versua) the asymptotic
change in laser intensity ar{®) the initial value of detuning. De-
tuning is modulated inside the period-2 domain (i A §=0.005.

D. Sensitivity to the change of control parameter

The stabilization effect depends on the amplitdd@and  the |aser response, the stabilization is possible at very slow
frequencyf, of control modulation as well as on the initial moqulation of the parameter, while at very small, the
detuningd, [see Eq(10)]. Generally, the efficiency of sta- stapilizing frequency should be very high. The upper range
bilization is determined by the sensitivity of the system t0j, _ is bounded by the commensurability of the control
the parameter change. In the absence of detuning modulgeqgyency with the driving one. An interaction between these
tion, the laser with cavity loss modulation displays theyyo frequencies can result in phase locking that leads to ad-
period-2 cycles both fob, = &, and for 6, = 8o +2A 6, with  gitional hysteresis effects.
maximal peak intensitiek; andl,, respectively. The sensi- The sensitivity of the system to the parameter change de-
tivity can be quantitatively characterized by the dependencgends on the distance from the bifurcation point or, in other
of fgonAé or onAl=I,—1I,. However,Al is not a linear \ords, on the vicinity of the system to the desired unstable
function of A 5 and for generalization of the results we study orhit. Figure %b) displays the evolution of the stabilizing
the dependence ol because this value characterizes thefrequency versus the distance from period-doubling bifurca-
difference in the system state either at two fixed values of thgion points (remember that the period-doubling bifurcations
control parameter or when the parameter changes adiabafire observed ad,,=0.510 anddy,=0.542). One can see
cally between these two boundary values. Moreover, the stahat closer to the bifurcation point, the laser is more sensitive
bilization can be achieved by modulating a control parametefg the change in the control parameter, i.e., the period-1 orbit
other thans in a different nonlinear system. is stabilized at a lower control frequency.

The minimal stabilization frequency as a function\dfis Additional simulations show that the sensitivity is differ-
shown in Fig. %a). The detuning is modulated inside the ent when detuning is varied within a period-2 domain situ-
period-2 domain situated betweép, anddo,. The values of  ated at the center of the gain contour. Obviously, closer to
Al are determined by using differedts. The data in Fig.  the maximum gain, the laser is less sensitive to detuning and
5(a) are well fitted by the double exponential curve the control frequency needed to stabilize an unstable orbit is

higher, i.e., for targeting an unstable orbit the detuning
fo= arexi (Al g— A By]+ anexil (Alg— A1V 8], should change faster.

11
(D E. Stabilizing periodic orbits embedded within

where the constants1,=0.196,a,=6, a,=2, 8,=0.065, a chaotic attractor

and 8,=0.676. Thus the stabilizing frequency decays expo- Stabilization of periodic orbits can be achieved also when
nentially with Al. Extrapolation of this dependence detuning is modulated within a chaotic domain that appears
—oo |eads tof «— 0. This means that at very high changes inat certain detuning when the driving amplitude increases up
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1ol (© duration of 40 ms. One can see that within certain ranges of
a2 . detuning the laser operates in a period-2 regime.
5 5 T - Examples of experimental transients after a step change of
£ . C e detuning are shown for illustration in Fig. 8. A small change
= ol . '. . me asdm of detuning inside the period-2 domairight-hand side of
0,49 050 0,51 0,52 053 Fig. 7) does not lead to destabilization of the system and a
Detuning, & period-1 orbit is not targeteldrig. 8@)], while the enhance-

ment of the detuning range allows one to target a period-1
FIG. 6. Numerical bifurcation diagrams ShOWing stabilization of orbit in transientS, as can be seen in F|Q))8|n this case,

periodic orbits within a chaotic attractor with increasing control the transients are larger (5.6 rthan in the previous case.
freq“enfg(a) f17=1200 Hz, (b) f1f51 kHZ;la”d(C) f1=6 kHz.Ko  One can compare in Fig.(® the duration of transients at
=6x10 " cm ", Ak=2.4x10"" cm %, 8=0.49, andAd  f5yard and backward switching of detuning, which are
=0.02. The arrows indicate the direction in the change of detunlngequal to 3.8 and 2 ms, respectively. Thus the transient time is

larger when detuning changes from a lower to a higher value

that agrees with simulations.
to Ak=2.4x10"° cm™ . Figure 6 demonstrates inhibition of  Following Eqg.(10), we apply a sinusoidal modulation to
chaos when the control modulation is applied. One can disc@Vity detuning so that the system remains inside the
tinguish in Fig. b) periodic regimes that appear with in- _perl_od-2 domain. Experimental bifurcation diagrams s_hown
creasingf,. At f,=1 kHz, a period-2 regime is reached at in Fig. 9 demonstrate the effect of the cont.rol _modula.tlon at
low detuning[left-hand side of Fig. @)], while at f,=6 dlfferen.t frequen.mes.. One can see that with mpreasﬁmg
kHz only a single period-1 orbit remains over the Wholethe period-2 regime is progressively suppresfféids. 9b)

range of detuningFig. 6(c)]. Dynamical hysteresis is clearly @nd 90)], the period-1 orbit appears in the laser response
seen in Figs. @) and &c). [Fig. 9c)], and complete stabilization is achievedfat=2

kHz [Fig. 9d)]. Comparing these diagrams with numerical
ones shown in Fig. 4, one can see a good qualitative agree-
ment.

The experiments were carried out with a single-modg CO  Periodic modulation of detuning inside a chaotic domain,
laser with modulated losses via an acousto-optic modulator.

Ill. EXPERIMENT

o
=]

The experimental setup is similar to that described in previ- (a) (b)
ous work[19]. Thedriving electric signalVy= Agsin(27f it) 150 s, S8 oy
at frequencyf 4= 105 kHz and amplitudd,, is applied to the & . .’.-"nf%'* b N
modulator providing the time-dependent cavity losses in ac- j1oof -2 ) F RN
cordance with Eq(9). The control electric signalV = A2 g P : ,

E i 3

+Ac(t)EA2+ AA[1—cos(2rft)], with a constant bias

voltage AS and modulation amplitud& A, and frequency ,

f., is used to tune the output mirror with a piezotranslator. £ °

This signal produces appropriate changes in cavity detuning“° o———|

in accordance with Eq(10). The frequency of relaxation 0 200 400 600 800 1000 0 200 400 600 800 1000

oscillations at the center of the gain line is about 108 kHz. Time (number of periods ) Time (number of periods 7)

This value is estimated from averaged power spectra when rig. 8. Experimental stroboscopic transients after different step

noise is applied to the modulator. Other parameters are theéhanges in cavity detuning. The voltade applied to the pie-

same as those used in simulations. zotranslator that tunes the cavity mirror is shown in the lower part
Figure 7 shows an experimental bifurcation diagram withof the figures.(a) Difference in transients when detuning switches

cavity detuning as a control parameter. This diagram is oben and off. (b) Transients led to an unstable period-1 regime at

tained by applying a ramp signal to the piezotranslator with aigherA.. A;=7 V andf.=0.
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100} FIG. 10. Experimental stroboscopic diagrams showing the ap-
E — pearance of a periodic structure in the chaotic attractor at different
£ 5ol epEmEEaIAGia control frequenciega) f,=200 Hz, (b) f,=500 Hz, and(c) f,=3

- kHz. A4=10 V.

Detuning, 4; (V) periodic orbit. The best conditions for targeting unstable or-

FIG. 9. Experimental stroboscopic diagrams showing stabilizaPits have been investigated in detail. The introduction of pe-
tion of the period-1 orbit within the period-2 attractor at different rodic modulation of the control parameter with a period
control frequencie$a) f.=200 Hz,(b) f.=500 Hz,(c) f.=1 kHz,  shorter than the time of the existence of the unstable orbit
and(d) fo=2 kHz. A4=7 V. during transients does not allow the system to leave the un-

stable orbit and hence this leads to its stabilization. Once this

orbit is targeted, the system remains on it until the control is
which appears at a higher driving amplitudd,&10 V),  switched off.
results in an alternation of chaotic and periodic regifftég. We have applied this method to a loss-driven Qaser
10). With increasingf., the range of the existence of the with periodically modulated cavity detuning. We have stud-
periodic regimes increas¢sompare Figs. 1@ and 1@b)]  ied the dynamical hysteresis appearing in the laser response
and finally, the period-1 orbit is stabilized at a certain rangevhen detuning is periodically modulated. The hysteresis
of detuning[Fig. 10c)]. Although we did not manage to loops display divergent or convergent behavior depending on
stabilize the period-1 orbit over the whole detuning rangethe control frequency. We have investigated how the effi-
because of the laser instabilities, these results confirm ougiency of stabilization depends on the system'’s sensitivity to
numerical simulations and demonstrate the validity of thethe parameter change. Minimal stabilization frequency de-
present approach for stabilizing periodic orbits embeddegays exponentially with the increasing difference between
within a chaotic attractor. adiabatic laser intensities at the boundary values of detuning.
The technique described in this work requires no knowledge
of the underlying system behavior. The results of numerical
simulations are in good agreement with experiments.

In this work we have numerically shown that a slow pe- Although the method proposed was applied to a laser, we
riodic modulation of a control parameter can stabilize un-think that a similar approach can be implemented to different
stable periodic orbits embedded within chaotic or nonchaoticlissipative dynamic systems whose behavior depends
attractors. We have studied how the duration of transientstrongly on parameters. For instance, some biological and
after a step change of the control parameter depends on timeedical experiments can be considered from this point of
phase of the parameter switch. We have demonstrated theiew; in particular, dynamical diseases tend to exhibit tran-
the change of the parameter can direct the system'’s trajectogfent behaviors and the severity of their symptoms varies
towards the attracting stable manifold of the desired unstablever time[25]. As an example, medical experiments on fluc-

IV. CONCLUSIONS
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